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Abstract

In the strong-constraint formulation of the history-matching problem, we assume that all the model errors relate to a selection
of uncertain model input parameters. One does not account for additional model errors that could result from, e.g., excluded
uncertain parameters, neglected physics in the model formulation, the use of an approximate model forcing, or discretization
errors resulting from numerical approximations. If parameters with significant uncertainties are unaccounted for, there is a
risk for an unphysical update, of some uncertain parameters, that compensates for errors in the omitted parameters. This
paper gives the theoretical foundation for introducing model errors in ensemble methods for history matching. In particular,
we explain procedures for practically including model errors in iterative ensemble smoothers like ESMDA and IES, and
we demonstrate the impact of adding (or neglecting) model errors in the parameter-estimation problem. Also, we present a
new result regarding the consistency of using the sample covariance of the predicted nonlinear measurements in the update

schemes.
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1 Introduction

It is standard to assume the model to be perfect when
we use ensemble smoothers for solving inverse problems.
This paper addresses the problem of consistently including
the additional effect of stochastic model errors in different
ensemble smoothers. In particular, we consider methods
such as Ensemble Smoother (ES) [12, 16], Iterative ES
(IES) [5, 6], and Ensemble Smoother with Multiple Data
Assimilations (ESMDA) [9].

There is a vast literature on solving the data assimilation
problem in the presence of model errors (see, e.g., the
reviews by Carrassi and Vannitsem [4] and Harlim [17]).
We traditionally characterize the data-assimilation problem
as being either a weak-constraint or a strong-constraint
problem, dependent on whether we include the dynamical
model as a strong or a weak constraint in the cost function.
The classical book by Bennett [1] is entirely devoted
to solving the weak-constraint inverse problem, and it
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illustrates that in the weak-constraint case, we need to invert
simultaneously for the state vector as a function of both
space and time. In Eknes and Evensen [7], the variational
formulation was solved for a weak-constraint parameter
and state estimation problem using the representer method
by Bennett [1], and in Evensen [11], different methods
including ensemble methods were used to solve a weak-
constraint state- and parameter-estimation problem.

A conclusion from these works is that, if model errors are
present, we need to increase the dimension of the problem
by either updating the model solution as a function of
space and time or by estimating the actual model errors and
thereafter solve for the model solution. Also, when using
Ensemble Kalman Filter (EnKF) by Evensen [10] or ES, it
is relatively easy to include stochastic model errors as long
as we update both the parameters and the state variables
simultaneously [11, 13].

At this point, we should mention that we do not
distinguish between model errors and model bias. In fact,
with time-correlated stochastic model errors, and if the
correlation becomes perfect (equal to one), then the model
errors become equivalent to a constant bias. Fortunately, the
procedure outlined in this paper can be used to estimate both
model errors and model bias.

In a recent paper by Sakov et al. [23], the Iterative
EnKF was reformulated to allow for additive model errors.
However, for the history-matching problem, we need to
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account for more general representations of the error
term since the solution of the reservoir simulator depends
nonlinearly on the errors in the rate data used to force the
model.

We will start by defining the standard strong-constraint
history-matching problem, and after that, we move on to
the general weak-constraint formulation. We then formally
derive the ES, ESMDA, and IES, in the presence of model
errors. The different smoother methods are used in a simple
example to demonstrate the consistency of the formulation
and to illustrate the impact of model errors on the parameter-
estimation problem.

2 Standard history-matching problem

The strong-constraint formulation given by Evensen [14]
is attractive because it simplifies the inverse problem
and efficient ensemble smoothers can be defined. A
first fundamental assumption is that we have a perfect
deterministic forward model where the prediction y only
depends on the input model parametrization X,

y =g(x). (1

In a reservoir history-matching problem, the model operator
is the reservoir simulation model, which predicts the
observed production of oil, water, and gas, from the
reservoir. Thus, given the true parametrization of x, the true
prediction of y is precisely determined by the model in
Eq. 1. Also, we have measurements d of the true prediction
y given as

d=y+e 2)

From evaluating the model operator g(x), given a realization
of the uncertain model parameters x € 9", we uniquely
determine a realization of predicted measurements y &
NR™ (corresponding to the real measurements d € R'").
Here, n is the number of parameters and m the number
of measurements. We want to use the measurements to
estimate the parameters X, and the measurements are
assumed to contain random errors e € R,

In history matching, it is common to define a prior
distribution for the uncertain parameters since we usually
will have more degrees of freedom in the parameters, than
we have independent information in the measurements.
Bayes’ theorem gives the joint posterior pdf for x and y as

Jxyld) o« f(x,y)f(d]y)
= f®fy[x)fA]y).

In the case of no model errors, the transition density f(y | X)
becomes the Dirac delta function, and we can write

fxyld) o f(x)8(y — g(x)) f(d]y). “

3)
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We are interested in the marginal pdf for x, which we obtain
by integrating (4) over y, giving

fx1d) oc [ f(0)8(y — g(x)) f(d]y)dy

= F0/(@]gx). ®
When introducing the normal priors
f®) = A Cro), ©6)
fdlgx) = f(e) = 40, Caa), (N
we can write Eq. 5 as
F(x]d) o exp { - %(x - xf)Tc;xl (x - xf)}
®)

X exp { — %(g(x) — d)TC;; (g(x) — d) }

Note that the posterior pdf in Eq. 8 is non-Gaussian due to
the nonlinear model g(x). Maximizing f (x| d) is equivalent
to minimizing the cost function

J® = (x—x)'Crl (x —x)
+(2gx) —d)"C;) (g0 — d).

Most methods for history matching apply the assumptions
of a perfect model and Gaussian priors, and they attempt to
solve either one of Eqs. 8 or 9.

For this strong-constraint problem, Evensen [14]
explained how (8) or (9) can be approximately solved using
the ES, ESMDA, and IES. We can interpret these methods to
approximately sample the posterior pdf in Eq. 8, and we can
easily derive them as an ensemble of minimizing solutions
of the cost function in Eq. 9 written for each realization as

T
Jx)) = (xj —x}) CTxx] (x; —xF)
+(g(x)) —d;) Cy (8x)) — d)).
This approach relates to the papers on Ensemble Random-
ized Likelihood (EnRML) [18, 20]. Note that the mini-

mizing solutions will not precisely sample the posterior
non-Gaussian distribution.

€))

(10)

3 ES solution

We start by defining the covariance matrix Cy,, between two
vectors X and y as the expectation,

Coy =E[(x—EIx1)(y—Ely))"]. (an

where E [ x] and E [ y ] define the expectations or means of
x and y. In the ensemble methods, we introduce the sample
mean

1 N
izﬁzxj, (12)
J=
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and the sample covariance between two arbitrary vectors x
and y as

N

- 1

Coy=5—7 > (x—%)(v, -)" (13)
j=1

We obtain the ES solution by first sampling the prior
parameters xt} and the perturbed measurements d; from

xi- ~ N (xF, Cyy), (14)
dj ~ A, Cua). (15)

We then compute the model predictions y§ from

y) =gx)). (16)

Evensen [14] derived the ES update equations for the
parameters x‘; and the predictions y‘} as

— -1
x = xl 4 Cy, (ny + Cdd> (dj - y§> 17)
a __ a

y; = 8(x3), (18)
but see also the alternative derivation in Sections 4.3—
4.6 below regarding the consistency of using the sample
covariance Cy, in Eq. 17.

Thus, to compute the ES solution, we start from an initial
ensemble of parameters X‘; and perturbed measurements

d;. We generate a prior ensemble prediction yl;. by

evaluating the model in Eq. 16 for each realization x... Then
we compute the prior ensemble covariance between the
parameters and the predicted measurements Exy e yrxm
and the ensemble covariance of the predicted measurements
C,, € R and use them in the ES update in Eq. 17.
Finally, we can recompute the model prediction using the
updated parameters xe]‘ in Eq. 18.

As an alternative to solving the model in Eq. 18 for yzj‘., it
is possible to compute the updated prediction directly from
an update equation

ygj = yi- +6yy (6”: + Cdd)_l (dj — y?), (19)

and in the case with a linear model, the result would be
identical to solving (18). However, due to the nonlinearity
of the deterministic model, the Eqs. 18 and 19 will give
different results for yej‘.. Equation 19 is just the standard ES

update yj. given the prior forecast ensemble for yg and the
perturbed measurements d; of y. We will later show that,
for nonlinear models, there may be a benefit of computing
y‘; indirectly through integration of the model in Eq. 18,
initialized with x?%, rather than using the direct update in
Eq. 19. Also, the indirect update in Eq. 18 allows for the use

of iterations.

4 General weak-constraint problem

Lets now look at a formulation where we assume that the
model depends nonlinearly on the model errors q as well as
the parameters X, i.e.,

y =gXx, q). (20)

The nonlinear model operator is quite general and can
represent any numerical or mathematical model, including
a recursion or time steps. The model error is a vector
of noise components that can represent any unresolved
physical process, errors from the numerical computation,
or errors in model forcing data. An example of the latter
is the time-correlated noise in rate data used to force a
reservoir simulation model. Thus, there is a significant
difference between x and q. Firstly, x is a static parameter
that does not change with time. Thus, once the parameters
x are estimated, we can use them in a future prediction
simulation. The model errors (, on the other hand, will vary
in time and are only estimated for the period of the inverse
calculation. Only in the case of time-correlated errors or
when q represents a bias, can the estimated q be used as a
forcing in the future prediction.

We assume that we have prior pdfs for the parameters
and the model errors, f(x) and f(q). It is common, but not
necessary, to assume that the model errors and parameters
are independent, and we can then write the joint prior pdf as
f(x,q) = f(x)f(q). The transition density for the model
evolution is

fyIx @) =38(y — g(x, @), (1)

and we obtain the joint pdf by multiplying the prior with the
transition density,

fy.xq =38y —gx @) fX) f(q. (22)

The likelihood function for the measurements given the
prediction y is f(d|y); thus, the posterior conditional pdf
becomes

fy.x, qld) o< f@y)S(y — gx, @) fX) f (@ (23)

Since y is given by the model in Eq. 20 as soon as we know
x and q, we can compute the marginal density

fx,qld) o [ f@dy)s(y — gx, q)f(X) f(q)dy 24)
= f(digx, @) f(X) f(q).

4.1 Gaussian priors

We now assume Gaussian priors

f(x) o exp { — %(x - XIC)TC;X1 (x —x") }, (25)
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and
1
f(@) ocexp { -5la- q)'C.l(a—q") } (26)

where qf would normally be zero. The likelihood for the
measurements becomes

f(dlgx, q)) =

exp { —ex, @ —d)'C;) (gx, @) — d) } @7)
and we write the marginal posterior as
f(x, qld)
exp {— (x— xf)TC;x1 (x — xf)
(28)

2
~Ha-4a)'C;l(a—d)
—lex, @ —d)'C;) (gx, @) — d)}.

Maximizing the posterior pdf in Eq. 28 is equivalent to
minimizing the cost function

F @) = (x—x) ¢l (x—x)
+a—d)'C;l(a—d) (29)
+(g(x, @) —d) Cg(g(x, @) —d).

As in the strong-constraint case, we sample the priors and

define a cost function for each sample realization, and we

obtain the weak-constraint analog to the strong-constraint

cost function in Eq. 10, i.e.,

J(xj.q;) = (xj — XE)TC;xl (xj — Xi)
\NT ~_
+(q; —qf) €5} ((le ~q})
+(g(x;, q)) — d;) Cyy(g(xj. q;) —d;).
(30)

4.2 Stationarity condition

To develop a consistent set of equations for the different
methods, it is simpler to rewrite the cost function for an
augmented variable z' = (xT, qT). We have now redefined
n to be the dimension of z. We can then define the
covariance

Cix C
C — XX Xq) , 31
iz <qu qu ( )
where we allow for correlations between x and q since this

correlation becomes important in the iterative methods, and
we can rewrite the cost function in Eq. 30 as

S @) = (2; - 2) € (z; - 7))
+(20) — d))" €y (a(2)) — d).

This cost function is slightly more general than the one in

Eq. 30 since we do not require independence between q and

(32)
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x. By taking the gradient with respect to z;, we obtain the
following closed system of nonlinear equations for z;

C'(zj —2%) + V,g(z))Cyy (8(z)) — d;) = 0. (33)

In the case of a linear model, the solution is the standard
Kalman filter update equation for the mean. However, the
presence of the nonlinear function g(z;) makes the solution
more elaborate. All of ES, ESMDA, and IES are developed
to solve this system of equations.

4.3 Derivation of ES update equations

To derive the ES solution, we will use a Taylor expansion
and approximation that allows us to obtain a closed form
solution for each realization of z;, i.e.,

g(z)) = g(z") + G (z; — 7)), (34)
where we have defined

Gj = Vig@)|, - (35)

Thus, we approximate the nonlinear function g(z;) with
its linearization in Eq. 34 around z = zi. and in addition

evaluate the gradient in Eq. 33 at zg. We now have the
gradient of the model, G; defined in Eq. 35, which differ for
each realization. We wish to replace the individual model
gradients with an “averaged” gradient that is common for
all realizations, and for now, we denote it G, which allows
us to write Eq. 33 as

(€2 +€TC,16) () = 6C 4 —5teh). G6)

By solving for z; and using the matrix identity
(G™'G+C")"'6™ ! = cGT(GCGT +D) !, (37)

(which can be derived from the Woodbury identity), where
we substitute C,, for C, and Cy4 for D, we obtain the
solution for z; as

f T T -1 f
z; =1 + C..G (GCZZG +Cdd) (d‘, - g(zj)). (38)
4.4 Linear regression for G
Evensen [14] used a Taylor expansion of g(z;) around the
ensemble mean Z = z' and could replace the individual

gradients in Eq. 35 evaluated at z; with the gradient Gz
evaluated at the ensemble mean z. He then showed that

C,; ~ GzCy;, (39)
and
Cyy ~ G;C,,GY, (40)
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Evensen [14, Egs. 29 and 30], but see also Reynolds et al.
[21]. He could then replace the analytical gradients with
sample covariances. This approach is mathematically con-
sistent, but the combined use of these two approximations
introduces an inconsistency in the update equation which is
discussed below.

Rather than defining G as the tangent-linear model evalu-
ated at the ensemble mean, we will here use an interpretation
based on linear regression (see also Reynolds et al. [21] and
Chen and Oliver [6]) where we start by defining

G 2 C,,C. (41)

Thus, we view G as the sensitivity matrix in a linear
regression between y and z, as

GC, =C,,. 42)
Also, using Eq. 41, we can write
GC..G" = C,,C'C,y. (43)

These two equations are mutually consistent for any
definition of G and they are not derived from Taylor
expansions as was used to obtain (39) and (40). The right-
hand side of Eq. 43 is not generally equal to C,, as is often
assumed.

We can replace the gradient G in the update (38), using
Eqgs. 42 and 43 to obtain

—1
Z, =1} + C, (cyzc;;czy + Cdd) (d j— g(zﬁ-))- “4)

The solution of this equation is identical to the solution of
Eq. 36 with G defined by Eq. 41. However, if we replace
Cyzcz_zl C;, with Cy, in Eq. 44, the solutions of Egs. 36 and
44 will differ in the nonlinear case.

4.5 Ensemble representation

We now introduce the ensemble-anomaly matrices

1 _ — ,

Y= ﬁ(h—y,--wYN—y) e fmy, 43)
1

Z:—N_l(zl—i,...,zN—i)em"XN, (46)

and write ensemble representations of Egs. 42 and 43 as

GC,~C,, or GZ=~Y, 47)
and
GC..GT ~ EyZE;EZy =YZ Z)(Z )Y, (48)

where the superscript T denotes pseudo inverse. The
symmetric matrix Z*Z defines the orthogonal projection
onto the range of ZT.

‘We will now consider three cases:
4.5.1 Linear model

For a linear model (and linear measurement operator), we
have Y = GZ, and Eq. 48 becomes

C,.C.C., =GZZ'2)Z+7)Z"G"

— (49)
=GZ(GZL)T =YY" = Cy,.

Hence, Eq. 49 is consistent with the definition of the
covariance matrix Cy, = YYT for linear models and all
combinations of n and N.

4.5.2 Nonlinear modeland n > N — 1

In the case with a nonlinear model and n > N — 1 the rank
of Z is N — 1, and the projection Z*Z = (I - %IIT)

with 1 € %" being a vector with all elements equal to one
(see the Appendix in Sakov et al. [22]). This result is seen
from the fact that Z has only one singular value equal to
zero corresponding to the right singular vector 1/+/N. The
projection Z1Z is then just the subtraction of the ensemble
mean. Since we have already removed the ensemble mean
from Y, we can write Eq. 48 as

C,CiCy =Y(1- 417) (1- 1Ty

v (50)
=YY" =C,,,

and as in the linear case, Eq. 48 exactly corresponds
to the definition of the ensemble covariance ny. This
nonlinear case with n > N — 1 is the most considered
case for history matching, data assimilation with nonlinear
measurement operators, and iterative smoothers used for
sequential data assimilation in nonlinear models. Thus, for
most applications of ensemble methods, we can replace the
product Eyzéjzézy with the sample covariance C,y.

4.5.3 Nonlinear modeland n < N — 1

In the case of a nonlinear model and n < N — 1,
which applies for the example considered in Section 6, the
expression in Eq. 48 is not equal to YY' and we must
include the projection and redefine the sample covariance as

C,, 2Y(ZZ)(Y(Z'Z))", (51)

i.e., we compute the covariance of the predicted measure-
ment anomalies projected onto the range of ZT. This case
also applies for nonlinear models in the limit of infinite
ensemble_size. Thus, we must use the definition (51) to
evaluate Cyy to ensure consistency in the derivation of the
update equation. The importance of including the projection

@ Springer
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is further discussed in the next section, and illustrated in the
examples in Section 6

4.6 ES algorithm

By representing the covariances using a finite sample size
and sample covariance matrices, we get the update equation
for the finite ensemble of N realizations as

z? = ztl + Ezy (Eyy + Cdd)il (dj — g(zg)), (52)

where Eyy is defined in Eq. 51. If we omit the projection in
Eq. 51, then the solution computed by Eq. 44 (using sample
covariances) and Eq. 52 will differ in the case of a nonlinear
model and n < N — 1, also when N becomes infinitely
large. Thus, our update will be biased.

To compute the ES update, we start by sampling the
Gaussian prior variables for the parameters x‘;, the model

errors ql;. , and the measurement perturbations e;,

xl;- ~ ¥, Ch), (53)
q; ~ 4 0.C), (54)
e; ~ A0, Caa). (55)

The vector q contains all stochastic model errors over
the time interval of the model integration, and the errors
can also have correlations in time. We obtain the model
prediction from the model written on the form

i =gxb.q)). (56)

where the model operator depends nonlinearly on the model-
error term. Next, we can compute the sample covariances

— —f
S"y’ and C,,,
Cl;y from the definition in Eq. 51.

Equation 52 defines the final update equations for xej‘. and

q? which becomes

from the ensembles of yg, x?, and qg, and

x5 = x+ €y (€, + Caa) (¢ - ¥F). (57)
(ﬁ' = (I§' + Etf]y (E]:) + Cdd)71 (dj - yi) (58)
We then rerun the model using the updates x‘} and q;? to get
¥} = g}, 4}). (59)

Alternatively, we can also compute the update of the
predicted measurements from

—f —f _
y; = yi‘ +Cyy (ny + Caa) l(dj - yi’)’ (60)

and in the case of a linear model the result would be
identical to that obtained by integrating the model in Eq. 59.

@ Springer

5 Iterative smoothers in the presence
of model errors

The critical approximations used in the derivation of ES
are, firstly, the linearization in Eq. 34 of the model about
x. meaning that large updates will have large errors, and
secondly, that an averaged statistical ensemble gradient
replaces the exact analytic gradients. Only a single linear
update step is computed, and with strong nonlinearities,
these approximations may lead to poor results as was
discussed in Evensen [14].

The minimization problem in Eq. 10 can be solved using
iterative methods like IES, ESMDA, and IEnKF. The itera-
tive ensemble smoother (IES) by Chen and Oliver [5, 6]
minimizes the ensemble of cost functions by direct minimiza-
tion using an approximate ensemble gradient. Alternatively,
the Ensemble Smoother with Multiple Data Assimilations
(ESMDA) by Emerick and Reynolds [8] rewrites the ES
update equation as a sequence of recursive updates by inflat-
ing the measurement errors, and thereby reduces the approx-
imation introduced by the linearization in the ES update.

Sakov et al. [22] and Bocquet and Sakov [3] derived
the iterative EnKF (IEnKF) and iterative Ensemble Kalman
Smoother (IEnKS) to better handle nonlinearities in the
dynamical model and the observation operator. The focus
was on state estimation where the model state at the time
t; is updated using measurements of the state at time #;41.
IEnKF solves the same kind of problem as given by the
marginal conditional pdf in Eq. 5 or the cost function in
Eq. 9. In a recent paper by Sakov et al. [23], the IEnKF
was extended to account for additive model errors, and the
method should also be applicable for the history-matching
problem in the presence of additive model errors.

In the following, we will present variants of ESMDA
and IES that take more general model errors into account
as is required when solving the weak-constraint history-
matching problem.

5.1 ESMDA

As explained in Evensen [14], ESMDA solves the standard
ES update equations using a predefined number of recursive
steps. In each step, the measurement error covariance and
associated measurement perturbations are inflated to reduce
the impact of the measurements. With correctly chosen
inflation factors and linear model and observation operators,
the ESMDA update precisely replicates the ES update.
When the model or observation operators are nonlinear, it
turns out that the use of multiple short update steps reduces
the errors and improves the solution as compared to using
one long update step in ES.

From the previous discussion, it is clear that, in the
presence of model errors, we need to recursively update both
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the parameters and the model errors. It is easiest to derive
ESMDA by using a tempering of the likelihood function
[19] which leads to a recursive minimization of a sequence
of Nmda cost functions, [14, 24],

I @ie) = 241 —270) (CL) 7 (2041 — 21)

+(gji01) —d — J@itie;)
X (OliJrlCdd)_l (2(z)it1) —d — Jairie) ),

(61)
where we evaluate Cé . atthe ith iterate z;, and we must have
dea 1
Y —=1 (62)

Q;

i=1
Similarly to the derivation of the ES in the previous section,
we obtain the recursive update equations for ESMDA given
by Egs. 68 and 69 in the algorithm below. As in ES,
the update direction is computed based on a linearization
around the prior realizations of each update step. Thus, we
can interpret the ES update as taking one long Euler step of
length At = 1 in pseudo time 7, while in ESMDA, we take
a predefined number of shorter Euler steps of step length
At; = 1/a; that satisfy (62) (see, e.g., the discussion in
Evensen [14]).

To compute the ESMDA solution, we start by sampling
the initial ensembles from Eqs. 53 and 54 to initialize the
recursion in ESMDA

Xj0 ~ N, Cy), (63)
qj0 ~ JV(O, qu)' (64)

Then the model is integrated according to Eq. 56 to obtain
the prior ensemble prediction for the first ESMDA step,

¥j.0=8X;0,9;0), (65)

and we compute recursively the following for each iteration
i=0,..., Npda — 1:

. —i —i
We construct the sample covariances ny, and qu,

from the ensembles of y;;, X;;, and q;;, and C§y from
the definition in Eq. 51, and we sample the measurement
perturbations

eji ~ N0, ai11Caa), (66)
used to generate the perturbed measurements
dj; =d+ej;. 67)
We then compute the updates
—i -1
Xji+l = Xj; + C;y (C;y-l- Oli+1Cdd) (dj,i - Yj,i)’ (68)
i oy~ -1
qQji+1 = qj,; + C;y (C;y-i- Oti+1Cdd> (dj,i - Yj,i),(69)
and rerun the model to obtain the updated prediction

Y+l = &Xjit1,q)i+1)s (70)

for step i 4 1. We repeat this procedure until i = Nygy — 1,
which results in the ESMDA solution for x;, q; and y;.

5.21IES

In IES, we use a gradient-based minimization method, and
we need to evaluate the first and second order derivatives of
the cost function in Eq. 32 with respect to z. The gradient of
the cost function in Eq. 32 is already derived above as Eq. 33

Vo 7 (z) = C (zj—z§)+vzg(z,-)cgdl (g(zj)—d;). (71)

An approximation to the Hessian of the cost function is
obtained by operating again by V, on the gradient in Eq. 71
to obtain

VaVy J (2)) ~ Cl + Vg (2))Cy ) (Vag(z)) (72)

where we have neglected the second derivatives or Hessian
of the vector function g(z), i.e., V;V,g(z). We can then write
a Gauss-Newton iteration

Zji+1 =2j; —VAzZj;, (73)

where we define Az as the gradient normalized by the
approximate Hessian as follows

pyi = (Ve f ) VS @)
= (C +6TCH6) - a9
+ (Cz_zl +Gj,Coy Gj,i)_lG},iC;a; (8zj.) —d;),
and we define
Gl ; = Vig(z)) (75)

as the gradient of the model, evaluated at iteration i and
for ensemble member j. Equations 73 and 74 define the
Ensemble Randomized Likelihood method [18, 20].

Since we are not computing the analytical gradient of
the model we will need to approximate the ensemble of
analytical gradients with an averaged gradient like G from
Eq. 41, or we can evaluate the gradient at the ensemble
average for the local iterate Gz as was explained by
Evensen [14]. The same model gradient is now used for all
realizations, and this leads to a different solution than the
solution of the originally posed problem.

Equation 74 is exactly Eq. (2) in Chen and Oliver
[6]. Also, Chen and Oliver [6] suggested using the state
covariance in the Hessian evaluated at the local iterate to
simplify further computations, since changing the Hessian
does not change the gradient and thus the final converged
solution (although it changes the step lengths in each
iteration).
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Thus, we can rewrite (74) with the averaged model
gradient and introduce the state covariance for the local
iterate in the Hessian, to obtain

o —1
nzji = ((CL) 7 +6ICy6) € ey — )
o —1
+((C) ' +67C3Gi) Gl (2@ d;).

(76)

Then using the corollaries
(c—l + GTD‘1G>71 =C-CG"(GCGT+D)"'GC,  (77)
6™ '¢+c")'¢"™p! = cG"(GCGT + D), (78)

which are derived from the Woodbury identity, we can write
(76) as

Azj; =C.C (z); — zi.) .
~CL.G (GiCLGT + Caa) 79)
X <G,’Cézcz_z1 (Zj,i — Zi) — (g(z/‘,,‘) — dj)).
Now, from Eqs. 42 and 43, we can write (79) as
Azj; = CézCz_zl(zj,i - zg.) »
—~Cl, (€l (CL)7ICly + Caa) (80)
x(C.C i — 78) — (825 — ).

In the original algorithm, the expression C;Z(CQZ)”Céy
was replaced with the covariance Ci,y. But, as we have seen,
this will break the consistency between (76) and (80) in the
nonlinear case with n < N — 1, and we need to use the
definition in Eq. 51 to replace this expression.

The numerical solution method for this equation is
discussed in more detail by Chen and Oliver [6]. It is
clear that it is the introduction of low-rank ensemble
representations of the covariances that makes it possible
to compute the update steps Az;;, and the computation
requires the use of singular-value decompositions and
pseudo inversions.

6 Examples

To verify the new algorithms, we will use the scalar example
from Evensen [14]. The example resembles the use of
conditioning methods in history matching, i.e., there is a
parameter x that serves as an input to a forward model to
predict y = g(x, g). We assume an initial state x and a
prediction y, given by the model

y =g, q)
— X1+ BxY) +q. D

Here, § is a parameter that determines the nonlinearity of
the model. In the current example, we have used g = 0.0
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for the linear cases and B8 = 0.2 for the nonlinear cases.
Clearly, in this case, the model error is additive to make the
linear case completely linear. If we have a product of x and
q, the problem becomes nonlinear, and we can not test if
the different methods converge to the same solution in the
entirely linear case where the convergence partly constitutes
our proof of consistency.

The model error g is a random variable sampled from
A0, Cyq) with Cyy = 0.0 in the case with no model errors
and Cy,; = 0.25 in the case including model errors.

In all the four cases, we sample the prior ensemble for
x from a Gaussian distribution with mean x' = 1 and
variance Cy = 1 and we sample the perturbed observations
of y from a Gaussian error distribution with mean d = —1
and variance Cygs = 1. Thus, in the current example, x
represents the initial state or the model parameter, while
y is the predicted observation. The goal is to estimate x
given a measurement of y and then to recompute the correct
prediction of y subject to model errors consistently with
Bayes theorem.

In this example, we use a sufficiently large number
of samples, i.e., 107, to generate accurate estimates of
the probability density functions and this allows us to
work directly with the pdfs and to examine the converged
solutions of the methods.

6.1 Results from the linear case

In Figs. 1 and 2, we show the results from the linear cases
without and with model errors. In Fig. 1, we plot the joint
pdfs for the prior and the updated solutions, and in Fig. 2,
we plot the corresponding marginal pdfs.

The joint pdfs illustrate the effect of including stochastic
model errors. Without model errors, there is a unique
mapping from x to y, and the pdf is zero except along
the curve (or line in the linear case) defined by the model
function y = g(x). The prior joint pdf has a maximum value
located at (x, y) = (1, 1) while the posterior joint pdf has
shifted the maximum value to (x,y) = (0, 0) for all the
methods. When we introduce the model errors, we notice
that we obtain a stronger update in y and weaker update in
x, than in the case without model errors. Still, we observe
that all the smoother methods give a result that is identical
to the Bayesian update. We can better visualize these results
when we examine the marginal pdfs plotted in Fig. 2.

In the case without model errors, we see that the
prediction pdf for y and the measurement pdf have the same
variance and only differ in the value of the means. The
measurement is at y = —1 while the mean prediction is
located at y = 1. The update from ES, ESMDA, and IES,
exactly matches the Bayesian update in this case and is
centered between the measurement and prediction pdf as we
would expect.
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Fig. 1 The plots show joint pdfs for the linear case. In the left column,
the model error is set to zero (a small model error is retained in the
final prediction for plotting purposes), while in the right column, we

include a model error with standard deviation equal to 0.5. The two
upper rows are the analytical prior and posterior, while the three lower
rows show the results from ES, ESMDA with four steps, and IES
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Fig. 2 The plots show the marginal pdfs for x in the left column and
the marginal pdfs for y in the right column for the linear case corre-
sponding to Fig. 1. The upper row is the case with zero model error,
while the lower row shows the result when we include a model error
with standard deviation equal to 0.5. In all the plots, the legends, e.g.,

When we include model errors, the effect is that the
prediction gets a higher variance, although the mean is the
same (in this particular case). Due to the higher variance,
we give more weight to the measurement in the update,
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Fig.3 Model error distributions for the linear case. It is not possible to
distinguish between the pdfs for the estimated model errors from the
different methods
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MDA _7.004_0.5 denote ESMDA with 107 ensemble members, 4 MDA
steps, and a model error with variance equal to 0.5. Note that, in the lin-
ear case, all the methods give results that are identical to the Bayesian
posterior, and the posterior pdfs are indistinguishable

and the update for y is stronger than in the case without
model errors. On the other hand, the update for x is weaker
in this case, since the addition of model errors reduces the
correlation between the predicted measurement y and the
prior x.

So, how can the update for y be shifted towards the
observation in this case? After all, we compute y as a
prediction from x. Here, the inclusion of the model errors
in the inversion plays a vital role. We simultaneously update
the ensemble for x and the estimate of the model errors ¢.
In Fig. 3, we see how we shift the model errors towards
negative values. Thus, when we integrate the model forward
from the updated x, the forcing from g compensates for the
weaker update of x and also the additional shift of y towards
the measured value.

This example illustrates how model errors impact the
updates of x and y as well as how we also need to include
the model errors as a parameter in the estimation and then
use it in the prediction to obtain the correct estimate of y.
Finally, we also demonstrate that in the linear case with and
without model errors, ES, IES, and ESMDA, all converge to
the correct Bayesian solution.
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Fig. 4 The plots show joint pdfs for the nonlinear case. In the left upper rows are the analytical prior and posterior, while the three lower
column, the model error is set to zero, while in the right column, we rows show results from ES, ESMDA with four steps, and IES
include a model error with standard deviation equal to 0.5. The two
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Fig. 5 The plots show the marginal pdfs for x in the left column and
the marginal pdfs for y in the right column for the nonlinear case
corresponding to Fig. 4. The upper row is the case with zero model
error, while the lower row shows the result when we include a model
error with standard deviation equal to 0.5. In all the plots, the legends,

6.2 Results from the nonlinear case

In Figs. 4 and 5, we show the results from the nonlinear
cases with and without model errors, where Fig. 4 plots the
joint pdfs for the prior and the updated solutions, and in
Fig. 5, we plot the corresponding marginal pdfs.

From the joint pdfs, we notice that the various smoother
methods give different results both with and without the
inclusion of model errors, although the general shape and
locations of the pdfs are reasonably consistent with the
theoretical solution as given by Bayes theorem.

We get a clearer picture from the marginal pdfs in Fig. 5.
As for the linear case, we get a weaker update of x and a
stronger update of y. We also notice that the introduction of
model errors is handled well by the iterative methods, and
the results are somewhat better and more consistent with the
theoretical solution than in the case without model errors.
ES is still the poorest estimator, and the iterative smoothers
provide a significant improvement in the estimate, also in
the case including model errors. We show the corresponding
updates of the model error ¢ in Fig. 6 and the different
smoother methods all give slightly different results.
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e.g., MDA_7_004_0.5 denote ESMDA with 107 ensemble members, 4
MDA steps, and a model error with variance equal to 0.5. The legends
ES_7.0.0D and ES_7_0.5D refers to an ES case where the prediction
yj? is updated directly by Eq. 60

The dashed green line in the plots for y in Fig. 5 is the
direct ES update of y using the predicted ensemble for y and
the measurement. It is clear that the update of x followed by
an integration of the model to obtain y gives a better result
than a direct update of y. Furthermore, the additional use
of iterations improves the estimate of y even further. This
result is the motivation for introducing IEnKF in sequential
data assimilation [22, 23] and also the iterative smoother
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Fig.6 Model error distributions for the nonlinear case
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by Bocquet and Sakov [2, 3]. In history matching, we are
primarily interested in estimating X, and the prediction y is
just the result given the model parameters in x. But also in
history matching, the ultimate value comes from accurate
predictions of y. ~

The impact of using (51) for evaluating Cy,, in the update
schemes is illustrated in Fig. 7, where we show results
including and excluding the projection. The impact is most
pronounced when using ES and ESMDA with few update
steps where the use of Eyy instead of Eyy severely impacts
the computation of the long linear update steps. In IES,
we must include the projection to ensure that the gradients
defined in Egs. 76 and 80 are identical but in the current case
the relative difference in the estimated mean when including
or excluding the projection is only around one percent.

7 Including model errors in history matching

The need for including model errors in iterative ensemble
smoothers became apparent while working with the paper
[15], which considered the conditioning of reservoir models
on production-rate data. Typically, in history matching, we
assign errors to the rate data used in the conditioning step,
while we neglect these errors when the same data are used
to force the reservoir simulation model during the historical
simulation.

We consider the errors in rate data to be a significant
component of the total model error when we exclude
errors in the estimated model parameters. Also, Evensen
and Eikrem [15] pointed out that there are strong
time correlations in the errors in rate data due to
the rate allocation procedure used. When we include a
stochastic model forcing using time-correlated errors, we
will experience a significantly stronger impact than when
the errors are white in time (see Chap. 12 in Evensen [12]).

The functional form y = g(x,q) can represent the
prediction of the produced rates (that we observe) from
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Fig. 7 The plot compares solutions including (solid lines) and
excluding (dashed lines) the projection in Eq. 51

a reservoir simulation model. Note that using ensemble
methods, we do not need to explicitly construct the
functional form y = g(x,q) since we represent the
gradients using ensemble covariances. We only need
access to a numerical reservoir simulation model. The
inputs x then contain all the uncertain parameters of the
model, such as, e.g., porosity and permeability fields,
various transmissibilities, and even parameters defining the
reservoir structure. The model errors can be the errors in the
rates used to force the model in the historical period. These
errors are not additive since the model prediction depends
nonlinearly on the specified rates.

If we associate the dominant model errors with the rates
used to force the simulation model, then the size of the
vector of model errors q is equal to the number of rate data
used to force the model. A typical frequency of historic rate
data for a well can be 12 data points per year, i.e., if we force
the model using monthly reservoir-volume rates.

The prior error statistics for the rate data used to force the
model should be the same as is used for the rate data in the
update step. Thus, we can simulate a prior ensemble of time
series with mean zero, a specified variogram in time, and a
specified variance, to represent the model errors. These time
series are then defining the vectors q; of model errors for
each realization. An ensemble model-error covariance Cgy
is then defined by the ensemble q;.

The conventional procedure of deriving the production
rates from rate allocation tables, which we only update in
connection with separator tests, often several years apart,
means that the errors in the rate data will be nearly perfectly
correlated in between each separator test. Note also that
the inclusion of time correlations significantly reduces the
degrees of freedom in the model errors and simplifies the
estimation of the model errors in the conditioning step.

The expected impact of including model errors is first
a larger and more realistic spread of the prior ensemble.
Second, we will obtain a weaker and more correct update of
the reservoir parameters in conditioning step. Furthermore,
the posterior ensemble will give a more accurate and
consistent prediction at the end of the history-matching
period since the posterior realizations are forced by updated
and improved estimated rates. Thus, we have an improved
basis for making future predictions. We also expect that the
information contained in the improved estimates of rates, in
some cases may be used to correct for biases in the rates
used in future predictions.

8 A note on the specification of model errors
The model written in the form (20) is quite general and can

in principle represent any functional relation between a set
of inputs x and q and a prediction y. The functional form

@ Springer



Comput Geosci

g(x, q) can represent, e.g., a reservoir simulation model as
is referred to in this paper, or it can represent the measured
outputs of a weather prediction model run over a specific
time interval.

The representation of model errors in q is also quite
general and covers both additive errors and errors on which
the model depend nonlinearly. The vector q can contain
a time sequence of errors applied at different time steps,
and the errors can represent perturbations to any poorly
modeled process. Furthermore, ¢ can be any vector of any
length containing any uncertain error parameter. We can
decompose q into additive parts and parts on which the
model depends nonlinearly. We can model errors due to
missing physics or errors in the discretization as an additive
error term.

The specification of the prior model error statistics is
often seen as the primary obstacle when accounting for
model errors, but this is not an argument for entirely
ignoring the model errors. The prior specification of
the model error covariance is nothing different from
specifying the error statistics of uncertain initial conditions,
uncertain parameters, and uncertain measurements. We
restrict ourselves to Gaussian priors, so we need to prescribe
the mean and the covariance. If the covariance is isotropic
for each error type or component and different components
are uncorrelated, we only need to specify the variogram
length for each component. The variogram length would
then depend on the physical model and the particular type
of error term. Note also that we never need to compute
the full error covariance C,; since only realizations
of the model errors are required. A stepwise approach
for introducing model errors with gradually increasing
statistical complexity could be the following:

1. Assume unbiased and uncorrelated errors, thus pre-
scribe only the variance when sampling the realizations
of the prior error terms.

2. Specify correlations for different types of errors (or
error components) independently.

3. Introduce possible correlations between different error
components.

The posterior results from the inversion should be verified
to check the consistency with the prescribed priors.

9 Summary

In this paper, we have given consistent formulations of
iterative ensemble smoothers when we include model
errors. We demonstrate the consistency by showing that the
ensemble smoothers all converge to the Bayesian posterior
in the linear case. The main result is that the model errors
need to be treated as another set of unknown parameters and
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estimated in the same way as the input parameters to the
model. The proposed approach allows for the inclusion of
general nonlinear errors that can be both red and white in
time. Thus, we can apply the iterative methods for history
matching of reservoir models forced with uncertain rate data
having time-correlated errors, as well as for the sequential
data assimilation problem with general model-error terms.

We demonstrate that the inclusion of model errors leads
to a weaker update of the input parameters to the model, but
a stronger update of the measured model prediction. Vice
verse, the negligence of model errors that should be present,
will lead to a too substantial update of the model input
parameters with an associated underestimated uncertainty
and also a too weak update of the prediction.

Thus, the results open for a more consistent solution
of the history-matching problem, given that significant
model errors are neglected in all previous history-matching
applications with iterative ensemble smoothers.

We also briefly discuss an inconsistency of the lin-
earizations in the analysis scheme that appear for nonlinear
operators and when the state dimension is less than the
ensemble size minus one, and we show that we must include
an additional projection of the predicted measurements for
consistency in the derivation of the final update equations.
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